附件::
备注::
ROC
- ROC curve
- Response Operator Characteristic curve
AUC
- Area Under the Curve
- [[SAND第6章代码]],[[用R对网络数据进行统计分析#^e84r1qmf327|ROC曲线介绍]]
-
- [[隐藏能力理论]]
参考文献
Albora, G., Pietronero, L., Tacchella, A., & Zaccaria, A. (2021).
Product progression: A machine learning approach to forecasting
industrial upgrading. 2105.15018
Arts, S., Hou, J., & Gomez, J. C. (2021). Natural language
processing to identify the creation and impact of new technologies in
patent text: Code, data, and new measures. Research Policy,
50(2), 104144. https://doi.org/10.1016/j.respol.2020.104144
Bojanowski, M., & Chroł, B. (2020). Proximity-based methods for link
prediction in graphs with r package ’linkprediction’. ASK. Research
& Methods, 29(1), 5–28. https://doi.org/10.18061/ask.v29i1.0002
Brachtendorf, L., Gaessler, F., & Harhoff, D. (2020). Truly
standard-essential patents? A semantics-based analysis (No. 14726).
C.E.P.R. Discussion Papers. https://econpapers.repec.org/paper/cprceprdp/14726.htm
Bustos, S., Gomez, C., Hausmann, R., & Hidalgo, C. A. (2012). The
dynamics of nestedness predicts the evolution of industrial ecosystems.
PLOS ONE, 7(11), e49393. https://doi.org/10.1371/journal.pone.0049393
Gao, M., Chen, L., Li, B., Li, Y., Liu, W., & Xu, Y. (2017).
Projection-based link prediction in a bipartite network. Information
Sciences, 376, 158–171. https://doi.org/10.1016/j.ins.2016.10.015
Hausmann, R., Stock, D. P., & Yıldırım, M. A. (2021). Implied
comparative advantage. Research Policy, 92(1), 104143.
https://doi.org/10.1016/j.respol.2020.104143
Jie Chen, Jialin Chen, Shu Zhao, Yanping Zhang, Jie Tang, Chen, J.,
Chen, J., Zhao, S., Zhang, Y., & Tang, J. (2020). Exploiting word
embedding for heterogeneous topic model towards patent recommendation.
Scientometrics, 39(1), 1–18. https://doi.org/10.1007/s11192-020-03666-4
Lee, J., Ko, N., Yoon, J., & Son, C. (2021). An approach for
discovering firm-specific technology opportunities: Application of link
prediction to f-term networks. Technological Forecasting and Social
Change, 168, 120746. https://doi.org/10.1016/j.techfore.2021.120746
Ma, J., Pan, Y., & Su, C.-Y. (2022). Organization-oriented
technology opportunities analysis based on predicting patent networks: A
case of alzheimer’s disease. Scientometrics, 1–21. https://doi.org/10.1007/s11192-021-04219-z
Medo, M., Mariani, M. S., & Lü, L. (2018). Link prediction in
bipartite nested networks. Entropy, 20(10), 777. https://doi.org/10.3390/e20100777
Ren, Z.-M., Zeng, & Zhang, Y.-C. (2018). Structure-oriented
prediction in complex networks. Physics Reports, 750,
1–51. https://doi.org/10.1016/j.physrep.2018.05.002
Teodorescu, M. (2018). Knowledge flows and IP within and across
firms - economics and machine learning approaches [PhD thesis,
Harvard Business School]. https://dash.harvard.edu/handle/1/41940978
Wu, L., Wang, D., & Evans, J. A. (2019). Large teams develop and
small teams disrupt science and technology. Nature,
566(7744), 378–382. https://doi.org/10.1038/s41586-019-0941-9